
Resource Usage Modeling for Network Monitoring Applications

Josep Sanjuàs-Cuxart and Pere Barlet-Ros
Universitat Politècnica de Catalunya

Barcelona, Spain
{jsanjuas,pbarlet}@ac.upc.edu

Abstract

Building robust network monitoring applications is hard

given the unpredictable nature of network traffic and high,

ever-increasing data rates. Traffic analysis systems must

be designed with load shedding techniques in mind that can

reduce the workload of a network monitoring system whilst

gracefully degrading the accuracy of the results. We present

a novel load shedding approach based on building a model

of the resource consumption of monitoring applications and

using it to prevent overload. The system extracts a set of

features from the traffic in the form of counters, and mea-

sures the resource usage of the monitoring tasks. This in-

formation is used to build a multiple linear regression based

model of the monitoring task. This model can be used to pre-

dict the resource usage of the monitoring tasks, and there-

fore to select the appropriate level of load shedding with great

accuracy and in a fine-grained basis. We implement and

deploy or system on a high-speed link of a large academic

ISP. Our results show that our system predicts resource us-

age with errors below 5%, and that the predictions can be

used to fully prevent uncontrolled packet loss.

1 Introduction

Passive network monitoring systems extract in real
time a set of metrics from the traffic that traverses
network links. The insight they provide on the network
traffic is crucial for the operation of networks, and aids
perform, among other tasks, troubleshooting, anomaly
detection, capacity planning and traffic engineering.

The most important challenge that monitoring sys-
tems face is keeping up with the incoming traffic data
rates, that is, to be able to process all the packets with-
out loss of accuracy. This is hard to achieve, given the
trend of continuous growth of network bandwidth. It
is not sufficient for the system to perform above the av-
erage input traffic data rate, because it is prohibitively
expensive to dimension system buffers to absorb sus-

tained peaks. It is also important to note that preserv-
ing the accuracy of the monitoring tasks is especially
important in the case of anomalies or extreme traf-
fic mixes, as this is when the network operators value
the most the reports from monitoring applications. It
is therefore crucial to prevent uncontrolled packet loss
under heavy load.

Several research proposals have addressed this chal-
lenge. The proposals fall in two broad categories.
Firstly, some proposals consider a fixed set of well-
known traffic metrics that the monitoring systems cal-
culate and degrade the accuracy of the results in the
presence of overload. Secondly, other proposals con-
sider a system that can compute arbitrary metrics,
which are called queries and which are defined using
a declarative language, usually inspired on SQL, with
a limited set of operators whose cost and selectivity
is assumed to be well known. This makes the system
aware of the cost of the computations it performs so
that it can determine the right amount of load to shed.
The proposals in both these sets incur a key limitation:
they limit the utility of the monitoring systems by re-
stricting either the metrics the system calculates or the
computations it can perform to calculate them.

Our proposal differs from the solutions proposed in
the literature in that it does not require any explicit
knowledge about the queries and therefore does not
restrict the kind of computations that the monitoring
tasks are allowed to do. Instead, queries are treated as
black boxes with an input traffic, output results, and a
measurable resource consumption.

Each query maintains a set of data structures in
order to calculate the output result. The resource con-
sumption of a query is then devoted to maintaining
this set of data structures. For example, to calculate
the number of flows in a traffic stream, a query can use
a hash table. Resources will be spent by the query to
maintain the hash table, by either creating or updating
entries. Our thesis is that the cost of the queries, which
is dominated by the maintenance costs of its data struc-



0 10 20 30 40 50 60 70 80 90 100
0

2

4

x 10
6

C
P

U
 c

yc
le

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

P
ac

ke
ts

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
x 10

5

B
yt

es

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time (s)

5−
tu

pl
e 

flo
w

s

Figure 1. CPU usage of a query compared to
the number of packets, bytes and flows in the
traffic

tures, can be modeled and predicted by examining the
characteristics of the input traffic.

In figure 1 we illustrate this point by comparing the
cost in CPU cycles of a query to three characteristics
of the input traffic. We have artificially introduced an
anomaly in the input traffic that increases the number
of flows in the traffic stream from seconds 35 to 65.
It is clear that the cost of the query highly depends
on the number of flows in the traffic, whereas it does
not exhibit such a high degree of dependence with the
other two features.

In this paper, we present a system that builds a
model of the resource usage of each query. It extracts
a set of lightweight metrics from the input traffic, and
measures the CPU cycles that the queries utilize to
process the traffic. Our system then uses the models
to anticipate overload situations and immediately shed
the necessary amount of load.

2 Related Work 1

The design of mechanisms to handle overload situ-
ations is a classical problem in any real-time system
design and several previous works have proposed solu-
tions to the problem.

In the network monitoring space, NetFlow [4] is con-
sidered the state-of-the-art. In order to handle the
large volumes of data exported and to reduce the load
on the router it resorts to packet sampling. The sam-

1Due to time constraints before the submission deadline, this
section has been taken from ”Load Shedding in Network Moni-
toring Applications”, by Pere Barlet-Ros, Gianluca Iannaccone,
Josep Sanjuàs-Cuxart, Diego Amores-López and Josep Solé-
Pareta. To appear in USENIX’07.

pling rate must be defined at configuration time, and
to handle unexpected traffic scenarios network opera-
tors tend to set it to a low “safe” value (e.g., 1/100 or
1/1000 packets). Adaptive NetFlow [7] allows routers
to dynamically tune the sampling rate to the memory
consumption in order to maximize the accuracy given a
specific incoming traffic mix. Keys et al. [11] extend the
approach used in NetFlow by extracting and exporting
a set of 12 traffic summaries that allow to answer a
fixed number of common questions asked by network
operators. They deal with extreme traffic conditions
using adaptive sampling and memory-efficient count-
ing algorithms. Our work differs from this approach in
that we are not limited to a small set of known traffic
summaries but instead we can handle arbitrary net-
work data mining applications.

Several research proposals in the stream database
literature are also very relevant to our work. The Au-
rora system [2] can process a large number of concur-
rent queries that are built out of a small set of oper-
ators. In Aurora, load shedding is achieved by insert-
ing additional drop operators in the data flow of each
query [14]. In order to find the proper location to insert
the drop operators, [14] assumes explicit knowledge of
the cost and selectivity of each operator in the data
flow.

In [3, 13], the authors propose a system that ap-
plies approximate query processing techniques, instead
of dropping records, to provide approximate and delay-
bounded answers in presence of overload. Our work
differs from these approaches in that we have no ex-
plicit knowledge on the query and therefore we cannot
make any assumption on its cost or selectivity to know
when it is the right time to drop records. Regarding the
records to be dropped, we apply packet or flow sam-
pling to reduce the load on the system, but other sum-
marization techniques constitute an important piece of
future work.

Our system is based on extracting features from
the traffic streams with deterministic worst case time
bounds. Several solutions have been proposed in the
literature to this end. For example, counting the num-
ber of distinct items in a stream has been addressed
in the past in [8, 1]. In this work we implemented the
multi-resolution bitmap algorithms for counting flows
proposed in [8].

3 System Overview

In this section we present a description of the sys-
tem, with emphasis on the architecture of the monitor-
ing platform, and the load shedding methodology. We
also discuss the main challenges behind the CPU cy-



Figure 2. System overview

cles measurement, the traffic feature extraction mech-
anisms and the prediction subsystem.

As previously discussed, our approach to load shed-
ding has a fundamental benefit over the previous pro-
posals: it treats queries as black boxes and does not
require knowledge about the computations that queries
perform or their cost. To show the advantages of our
technique, we have chosen the CoMo network monitor-
ing system to implement our load shedding scheme. In
the interest of space, we omit the details about the ar-
chitecture and design of the CoMo network monitoring
system which are not required to present our load shed-
ding techniques. The interested reader can find details
on the architecture of CoMo in [9].

In CoMo, queries are implemented in the form
of plug-in modules written in the C programming
language, while the core system performs all the
tasks common to any monitoring application. Previ-
ous declarative language language-based approaches to
load shedding were not applicable to CoMo, so this sys-
tem serves well the purpose of illustrating our scheme.

Figure 2 shows the components and the data flow of
our system. First, packets are read from the wire and
the packets of interest are filtered. The packets are then
grouped in batches of packets of 100ms. Batches en-
ter the prediction and load shedding subsystem, which
consists of four phases:

• Feature Extraction. In this phase the traffic con-
tained in the batch is characterized by extracting
a set of features. Each feature is a counter that
maps a characteristic of the traffic. The detailed
list of traffic features can be found in section 3.3.

• Feature Selection. The system maintains a his-
tory of the traffic features and actual cost of each
query. In this phase, the system uses this history
to determine what features help explain the cost
of each query. Only each query’s relevant features
are taken into account in the next phase.

• Multiple Linear Regression. In this step, the sys-
tem builds a prediction model for each query using
the history and taking into account the selected
features, based on the Multiple Linear Regression.

Table 1. Queries used in the experimental
evaluation

Name Description
application Port-based application classification

flows Per-flow counters

high-watermark High watermark of link utilization

link-count Traffic load

popular destinations Per-flow counters for top destination IPs

string search Finds a sequence of bytes in the payloads

trace Full-payload trace collection

The system uses the models and traffic features to
emit a prediction of the CPU usage of each query.

• Load Shedding. By comparing the predicted CPU
load with the available cycles, in this stage the
system can precisely determine whether to shed
load, and how much load to shed.

Finally, batches are passed to all the queries, which
calculate the metrics the users are interested in. The
CPU usage of each query is monitored, and the mea-
surements are used to update the recorded history of
each query.

3.1 Queries

For validation purposes, in this work we have consid-
ered the set of queries that are available in the standard
distribution of CoMo. In table 1 we present the queries
with a brief description. We believe this set of queries
is representative enough of the typical workloads and
applications of network monitoring systems. Moreover,
they use different data structures that lead to diverse
CPU utilization patterns: aggregated counters, hash
tables, linked lists.

3.2 Measurement of CPU cycles

Our scheme requires accurate measurement of the
CPU usage of the queries to generate accurate mod-
els of the resource usage of the queries. Fine-grained
measurement of CPU usage is not a trivial task for
two main reasons: the lack of support from operating
systems and the amount of noise in the measurements.

Lack of operating system support. System calls
such as gettimeofday() do not provide enough reso-
lution for the accurate measurements required in this
work. For this reason, in this work we use the time-
stamp counter (TSC) register present in the x86 family
of processors. The TSC is incremented once per each



CPU cycle, and therefore provides extremely high res-
olution. The TSC can be read from user-space with
the rdtsc assembly instruction.

Measurement noise. The noise comes from three
main factors. First, instruction reordering. In order to
maximize its performance, modern CPUs aggressively
reorders instructions according to their dependencies.
Since the rdtsc instruction has no data dependencies
on other instructions, it is a good candidate for re-
ordering. This is an issue we tackle with the use of
serializing instructions [10] before and after each call
to the rdtsc instruction.

Second, context switches. Since our monitoring sys-
tem has no control on the operating system’s scheduler,
the monitoring tasks may be scheduled out in favor of
other tasks. This heavily affects the CPU measure-
ments. In order to minimize the impact of this source
of noise, we run the monitoring system with maxi-
mum priority and we monitor context switches with the
getrusage() system call. Whenever a context switch
is reported, we discard the current measurements.

Third, competition for the bus. System activity
such as DMA disk accesses or memory accesses from
processes running in other CPUs in SMP systems are
a source of noise. However, in practice this source of
noise is negligible and, as seen in the evaluation section,
our system performs well under such circumstances.

3.3 Traffic feature extraction

Traffic features are extracted from the traffic in or-
der to help in the prediction stage. Our goal is to calcu-
late a set of features that, with low overhead, provides
information on the characteristics of the traffic that
helps explain the cost of a wide range of queries. A
feature too specific would add overhead without con-
tributing to build better resource usage models. Alter-
natively, a feature could provide valuable information
but have a cost in terms of CPU comparable to the
cost of a query, which is not desirable.

In our system, we use two kind of counters. First,
two simple counters: the number of packets and the
number of captured bytes. These are of very low cost
and, especially for the former, explain a great portion
of the cost of most queries. Secondly, we calculate a
set of traffic aggregates. These counters hold the count
of unique occurrences of header fields or combinations
of fields in the traffic. The actual traffic aggregates we
compute are described in table 2.

A naive algorithm for calculating traffic aggregates
would be very expensive in terms of both CPU time
and memory space. The recent literature provides ef-
ficient approaches that provide approximate counts of

Table 2. Traffic aggregates
1 src-ip
2 dst-ip
3 protocol
4 <src-ip, dst-ip>
5 <src-port, proto>
6 <dst-port, proto>
7 <src-ip, src-port, proto>
8 <dst-ip, dst-port, proto>
9 <src-port, dst-port, proto>
10 <src-ip, dst-ip, src-port, dst-port, proto>

these aggregates in linear time and bounded memory
space [8, 1]. In this work, we use multi-resolution
bitmaps [8] to calculate traffic aggregates. We dimen-
sion the bitmaps to obtain an error below 5%.

3.4 Feature Selection

The set of features we presented in the previous sec-
tion help explain the cost of many queries. However,
not all features are relevant to each query. The fea-
ture selection stage selects the relevant features that
exhibit correlation with the cost of the queries. This
has two beneficial outcomes: it reduces the amount of
noise when generating the prediction model for each
query, and it lightens the cost of building the predic-
tion model.

Our feature selection algorithm is based on the fast
correlation-based filter (FCBF) from [16]. This algo-
rithm can discard both the features that do not ex-
hibit any correlation with the CPU usage of queries,
and the features which are correlated with other rel-
evant features and therefore do not contribute useful
information in order to build the prediction models.

3.5 Prediction methodology

The core of our approach to load shedding is that the
traffic features provide a characterization of the traffic
which can be used to build a model of the CPU usage
of the queries.

The system maintains a table with the history of
traffic features and the actual cycle usage of each query.
The prediction subsystem uses this information to gen-
erate a prediction model of each query. It considers the
selected features as predictors, whereas the measured
CPU cycles are referred to as the response variable.

No single variable can be considered to explain in
detail the cost of a query. It is the combination of
many features that provides enough information to pre-
dict the CPU cycles of queries. Our system uses the



well-known multiple linear regression (MLR) to build
a model that can predict the response variable from
several predictors.

The MLR studies the relationship between a re-
sponse variable Y and p predictor variables X1, X2,
. . . , Xp, and assumes that Y is a linear function of the
predictor variables. The general form of a linear re-
gression model with a history of n observations of the
variables can be expressed as follows [5]:

Yi = β0 + β1X1i + β2X2i + . . .
. . . + βpXpi + εi, i = 1, 2, . . . , n.

(1)

In the previous expression, all Yi variables correspond
to observations of the response variable. The β1 . . . βp

variables are known as the regression coefficients or
the weight that each predictor variable has on the
response variable. Using the ordinary least squares
(OLS) method, the estimators b0 . . . bp for β0 . . . βp

are calculated so that the residuals εi are minimized.
In our system we use the single value decomposition

method [12] to compute the OLS, which, in spite of be-
ing more computationally expensive than others, yields
the best results approximation of the regression coeffi-
cients for over- or under-determined systems. The OLS
method relies on several statistical properties which
must be fulfilled. In the interest of space we do not
discuss these issues in this paper.

Note that the MLR assumes that the relationship
between the cycles consumed by a query is in fact a
linear combination of the traffic features. While in
practice in our system the MLR provides good results,
as shown in the system evaluation in section 4, inves-
tigating on algorithms and methods that can account
for non-linear relationships between predictors and re-
sponse variables constitutes an important piece of fu-
ture work.

3.6 The load shedding subsystem

The load shedding subsystem is in charge of shed-
ding the excess load to accommodate the demands of
the queries with the available CPU cycles. The fun-
damental questions a load shedder must answer are (i)
when to shed load, (ii) where to shed the load and (iii)
how much load to shed. In our system, this translates
to deciding whether a batch requires load shedding,
which queries to shed the load from, and how many
cycles must be saved by shedding load.

The first and second questions are answered using
the modeling predictions for each query and compar-
ing the sum of the predictions to the available process-
ing cycles per batch. In order for the system to know
how much available cycles it has, we have instrumented

CoMo with tools to measure the CPU usage of the core
system, besides measuring the usage of queries. Intu-
itively, a global input traffic sampling rate that sheds
the required load can be calculated as follows:

sampling rate = min
(

1,
available cycles

predicted cycles

)
In order to shed the required load, we apply this

global sampling rate to each query. We acknowledge
that this approach is rather unsophisticated. However,
in this paper we focus in resource usage modeling as a
tool to predict the resource usage of each query. There-
fore, we aim for a simplified approach to load shedding
that serves the purpose of validating the usefulness of
resource usage modeling for load shedding. We disre-
gard more complex load shedding techniques which can
be devised to account for priorities of queries, or apply
more shedding to the most cycle-demanding queries.

4 Evaluation

In this section we present an evaluation of our sys-
tem. We focus on two major points. First, that the pre-
diction models are accurate. Second, that the system is
robust enough to perform load shedding on real-time,
by analyzing live traffic on a high bandwidth link.

4.1 Environment

Our testbed scenario consists of two commodity
PCs, with Intel Pentium IV processors that run at
3GHz. Each computer is equipped with an Endace
DAG 4.3GE card [6] network card for high-speed col-
lection of packets. Both computers receive an exact
copy of the traffic of a link of the Catalan Research
and Education Network, an academic ISP that con-
nects the Catalan universities to the Internet. In order
to ensure that both computers receive exact copies of
the traffic, an optical splitter has been used to replicate
the traffic on the link.

4.2 Prediction Accuracy

To evaluate the accuracy of the models, we collect
two traces from our testbed. We run a modified ver-
sion of our system that does not perform load shedding,
but just performs the predictions, and runs the queries.
This allows for comparing the predictions with the ac-
tual CPU usage of queries. Instead of running from
live traffic, and for repeatability purposes, we collect
two traces from the link. In the first trace we store



0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

Time (s)

R
el

at
iv

e 
er

ro
r

Prediction error (5 executions − 7 queries)

average error: 0.012364
max error: 0.13867

average
max

Figure 3. MLR error (trace with payloads)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

Time (s)

R
el

at
iv

e 
er

ro
r

Prediction error (5 executions − 7 queries)

average error: 0.0065407
max error: 0.19061

average
max

Figure 4. MLR error (trace without payloads)

an exact copy of the traffic as seen on the wire. In the
second trace we do not store the payloads, but only the
packet headers.

In figure 3 we present a time-series of the prediction
error for the trace with packet payloads. It can be
seen that the average error across all queries is around
1%, while the error peaks around 13% but normally is
around 5%.

On the other hand, as seen in figure 4 the system
performs slightly better on the trace without payloads.
The average error is well below 1%, and while the er-
ror peaks at 19%, the maximum error is during a big
portion of the time series below 5%.

We speculate that the system performs better on the
trace without payloads due to the decreased interfer-
ence of disk activity with the CPU measurements.

4.3 Evaluation of the full system

In this section, we evaluate the system running on
live traffic. We implement and compare two additional
variants of our load shedding strategy. We name the
approach we present in this paper predictive. The
original variant of the system performs no load shed-
ding, i.e. is subject to packet loss on overloads. The
reactive variant is not predictive. Instead, it selects
the sampling rate based on the measurements of the
previous batch, which is an approach similar to that of
SEDA [15].

In order to be able to evaluate the error of queries,
we implement a mechanism to notify queries of the

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9
x 10

9

time

C
P

U
 u

sa
ge

 [c
yc

le
s/

se
c]

CoMo cycles
Load shedding cycles
Query cycles
Predicted cycles
CPU frequency

Figure 6. CPU usage after load shedding
(stacked) and estimated CPU usage (predic-
tive approach)

sampling rate applied to the input traffic, so that
queries can estimate their unsampled output. Also,
queries are allowed to choose between packet sampling
and flow-wise sampling at configuration time.

Figure 5 compares the amount of packet drops in
each approach and shows the superiority of the ap-
proach presented in this paper. The load imposed by
the input traffic is roughly equivalent to twice as much
as the system can handle. Unsurprisingly, the original
approach drops an amount of packets in the order of
50%. The reactive variant of the system performs
much better than the original, as it is able to reduce
the amount of packet loss by selecting low sampling
rates.

In contrast, our technique scores zero packet loss
during an 8-hour long experiment under equally ad-
verse traffic load. It is also important to note that not
only it prevents packet loss, which is easily achievable
by imposing conservatively low sampling rates, but it
also does so while applying high sampling rates. This
is highly desirable as higher sampling rates lead to re-
duced errors in the results of queries.

4.4 Overhead

Figure 6 shows a breakdown of the CPU cycles of
the system depending on the task they are used in. The
CoMo cycles represent the cycles that CoMo requires to
do the tasks common to all queries and which can not
be attributed to the technique we present in this paper,
which correspond to the Load shedding techniques in
the figure.

The overhead our technique introduces is not neg-
ligible, but it is reasonably low given the advantages
it provides to the operation of the system. The bulk



09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

pa
ck

et
s

Total
DAG drops
Unsampled

(a) Predictive load shedding

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

pa
ck

et
s

Total
DAG drops

(b) Original CoMo

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

pa
ck

et
s

Total
DAG drops
Unsampled

(c) Reactive load shedding

Figure 5. Link load and packet drops during the evaluation of each load shedding method

of the overhead corresponds to the feature extraction
phase. Therefore, accelerating this phase would greatly
reduce this overhead. The algorithms used in this step
are suitable for hardware implementation. Another vi-
able alternative to reduce their cost would be to de-
crease the accuracy of their approximate results. We
have experienced great variations in the overhead by
altering the size of the bitmaps. An interesting piece
of work would be to analyze the associated trade-offs,
as reducing the accuracy of the feature extraction al-
gorithms would save cycles but would in turn degrade
the accuracy of the prediction subsystem.

5 Conclusions and future work

Load shedding is crucial for network monitoring sys-
tems, which must inevitably be able to cope with over-
load during their operation. In this work, we have
investigated a predictive approach to load shedding
that contrasts with the reactive approaches that can
be found in the literature.

Our method is based on real-time modeling of net-
work monitoring applications by observing the charac-
teristics of the input traffic. We extract a set of fea-
tures from the traffic and, for each query, select the
relevant ones to build a prediction model of the CPU
usage. This models can be used to accurately predict
the CPU requirements of queries. This accurate, short-
term prediction permits selecting the highest sampling
rate that prevents packet losses.

We implemented our load shedding system on the
CoMo network monitoring system. We show that our
predictive scheme is able to prevent packet loss on a 8
hour long execution under high traffic data rates. On
the contrary, alternative, reactive approaches fail to
contain CPU usage and suffer from packet loss.

During the paper we have identified several ideas for

future work. Reducing the overhead of our technique
would make a nice improvement to the system. Also, it
would be interesting to investigate on prediction mod-
els besides the MLR, which can account for non-linear
relationships between traffic features and the cost of
the queries.

The load shedding subsystem presented in this work
is intentionally simple. We are working on providing
users with the possibility of defining utility functions
for their queries, so that the system can maximize its
own aggregate utility.

Another important piece of future work is to extend
the techniques to other system resources besides the
CPU power such as the system memory.

Acknowledgements

The work described in this paper has been done by
Pere Barlet-Ros, Gianluca Iannaccone, Josep Sanjuàs-
Cuxart, Diego Amores-López and Josep Solé-Pareta.

This work was funded by a University Research
Grant awarded by the Intel Research Council, and
by the Spanish Ministry of Education (MEC) under
contract TEC2005-08051-C03-01 (CATARO project).
Authors would also like to thank the Supercomputing
Center of Catalonia (CESCA) for allowing them to col-
lect the packet traces used in this work.

References

[1] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In Proceedings of RANDOM, 2002.

[2] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - a new class of data
management applications. In VLDB, 2002.



[3] S. Chandrasekaran et al. TelegraphCQ: Continuous
dataflow processing of an uncertain world. In Proceed-
ings of CIDR, 2003.

[4] Cisco Systems. NetFlow services and applications.
White Paper, 2000.

[5] W. R. Dillon and M. Goldstein. Multivariate Analysis:
Methods and Applications. John Wiley and Sons, 1984.

[6] Endace. http://www.endace.com.
[7] C. Estan, K. Keys, D. Moore, and G. Varghese. Build-

ing a better NetFlow. In Proceedings of ACM Sig-
comm, Aug. 2004.

[8] C. Estan, G. Varghese, and M. Fisk. Bitmap algo-
rithms for counting active flows on high speed links.
In Proceedings of ACM IMC, 2003.

[9] G. Iannaccone, C. Diot, D. McAuley, A. Moore,
I. Pratt, and L. Rizzo. The CoMo white paper. Tech-
nical report, Intel Research, Sept. 2004.

[10] Intel. The IA-32 Intel Architecture Software Devel-
oper’s Manual. 2006.

[11] K. Keys, D. Moore, and C. Estan. A robust system
for accurate real-time summaries of internet traffic. In
Proceedings of SIGMETRICS, 2005.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
2nd edition, 1992.

[13] F. R. Reiss and J. M. Hellerstein. Declarative network
monitoring with an underprovisioned query processor.
In ICDE, 2006.

[14] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In Proceedings of VLDB, 2003.

[15] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA:
An architecture for well-conditioned, scalable internet
services. In Proc. of ACM Symposium on Operating
System Principles, pages 230–243, 2001.

[16] L. Yu and H. Liu. Feature selection for high-
dimensional data: A fast correlation-based filter so-
lution. In Proceedings of ICML, 2003.


